Question: Two six-sided dice are rolled until a total of 11 is achieved 18 consecutive times in a row. What is the expected number of rolls this will take?

Answer: 41,660,902,667,961,039,785,742

Solution:

Let $\mathrm{x}=$ the number of rolls required.
Let $p=$ probability of rolling a total of 11 in one throw.
Let $\operatorname{pr}(\mathrm{z})=$ probability of event z .

There are two ways to roll a total of 11 out of the 36 possible outcomes of two dice, so the probability of rolling a total of 11 is $2 / 36=1 / 18$. So $p=1 / 18$.

We can express x as follows.
$x=(1-p)^{*}(1+x)+p^{*}(1-p)^{*}(2+x)+p^{2 *}(1-p)^{*}(2+x)+p^{3 *}(1-p)^{*}(3+x)+\ldots+p^{17 *}(1-$ $\mathrm{p}) *(18+x)+\ldots+\mathrm{p}^{18 *} 18$.

Let's rearrange terms...
$x=(1+x)+p^{*}(x+2-x-1)+p^{2 *}(x+3-x-2)+p^{3 *}(x+4-x-3)+\ldots+p^{17 *}(x+18-x-17)+$ $p^{18 *}(18-x-18)$
$\mathrm{x}=(1+\mathrm{x})+\mathrm{p}^{*} 1+\mathrm{p}^{2 *} 1+\mathrm{p}^{3 *} 1+\ldots+\mathrm{p}^{17 *} 1+\mathrm{p}^{18 *}(-\mathrm{x})$
$x=1+x+p+p^{2}+p^{3}+\ldots+p^{17}-p^{18 *} x$
$\mathrm{p}^{18} \mathrm{x}=\sum_{i=0}^{17} p^{i}$

$$
\begin{aligned}
& \mathrm{p}^{18} \mathrm{x}=\sum_{i=0}^{\infty} p^{i}-\sum_{i=18}^{\infty} p^{i} \\
& \mathrm{p}^{18} \mathrm{x}=\sum_{i=0}^{\infty} p^{i}-p^{18} \sum_{i=0}^{\infty} p^{i} \\
& \mathrm{p}^{18} \mathrm{x}=\left(1-p^{18}\right) \sum_{i=0}^{\infty} p^{i} \\
& \mathrm{p}^{18} \mathrm{x}=\left(1-p^{18}\right) * \frac{1}{1-p} \\
& \mathrm{p}^{18} \mathrm{x}=\frac{1-p^{18}}{1-p} \\
& \mathrm{x}=\frac{p^{-18}-1}{1-p}
\end{aligned}
$$

Let's divide the numerator and denominator by p :

$$
\begin{aligned}
& \mathrm{x}=\frac{p^{-19}-\left(\frac{1}{p}\right)}{\left(\frac{1}{p}\right)-1} \\
& \mathrm{x}=\frac{p^{-19}-\left(\frac{1}{p}\right)+\left(\frac{1}{p}-1\right)-\left(\frac{1}{p}-1\right)}{\left(\frac{1}{p}\right)-1} \\
& \mathrm{x}=\frac{p^{-19}-\left(\frac{1}{p}\right)+\left(\frac{1}{p}-1\right)}{\left(\frac{1}{p}\right)-1}-1 \\
& \mathrm{x}=\frac{p^{-19}-1}{\left(\frac{1}{p}\right)-1}-1
\end{aligned}
$$

Recall that $p=1 / 18$. Replacing that for p, we get:
$x=\frac{18^{19}-1}{18-1}-1$
$x=41,660,902,667,961,039,785,742$

If we assume a constant global population of 8 billion and everybody rolls dice at a rate of once a second 24 hours a day and 365 days a year, then it would take, on average, 165132 years for such event to occur.

The general formula for the expected number of trials required for an event of probability p to happen n times in a row is
$\frac{\left(\frac{1}{p}\right)^{n+1}-1}{\frac{1}{p}-1}-1$

