A circle of radius 1 is tangent to a parabola with equation $y=x^{2}$. What is the area in the red region, between the circle and parabola?

Hint:

Here is an integral I use, which comes up a lot in problems involving circles:
$\int \sqrt{1-x^{2}} d x=\frac{1}{2}\left[\mathrm{x} \sqrt{1-x^{2}}+\sin ^{-1}(\mathrm{x})\right]$

Here are a couple others, which you could use instead, combined with a variable substitution:
$\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin (2 x)}{4} \quad$ or $\quad \int \cos ^{2} x d x=\frac{x}{2}+\frac{\sin (2 x)}{4}$

First, let's define some points on the graph, as follows:

$\left(b, b^{2}\right)$ is one of the two places where the circle is tangent to the parabola.
$(a, 0)$ is the center of the circle.

Let's focus on the right triangle between the points $(0, a),\left(b, b^{2}\right)$, and $\left(b^{2}, 0\right)$:

Next, let's solve for a and b.

The Pythagorean formula tells us:
(1) $\left(a-b^{2}\right)^{2}+b^{2}=1$

Remember the equation of the parabola is $y=x^{2}$. Taking the derivative will give us the slope of the line tangent to the parabola. This derivative is $y=2 x$. So, the slope of the tangent line $a t\left(b, b^{2}\right)=2 b$.

Perpendicular to this line is a line that goes through the center of the circle, like the spoke of a wheel. This spoke must have slope $-\frac{1}{2 b}$. Let's find the equation of that line.
$\mathrm{y}=-\frac{x}{2 b}+\mathrm{a}$

Let's plug in the center of the circle into this equation to solve for b :
$\mathrm{b}^{2}=-\frac{b}{2 b}+\mathrm{a}$
(2) $a=b^{2}-\frac{1}{2}$

Let's substitute the value of a in equation (2) into equation (1):
$\left(\left(b^{2}-\frac{1}{2}\right)-b^{2}\right)^{2}+b^{2}=1$
$1 / 4+b^{2}=1$
$b^{2}=3 / 4$
$b=\frac{\sqrt{3}}{2}$

Equation (2) then tells us a=3/4-1/2 = $1 / 4$. So, the bottom of the circle is at $(1 / 4,0)$ and the top at $(5 / 4,0)$.

Next, let's find the area under the parabola.
$\int_{-\sqrt{3} / 2}^{\sqrt{3} / 2} x^{2} d x=$
$\frac{x^{3}}{3}$ from $\sqrt{3} / 2$ to $-\sqrt{3} / 2=$
$\frac{\sqrt{3}}{4}=\sim 0.4330$

The area under the circle will be trickier. To keep the integral as simple as possible, let's first calculate the area under a unit circle, centered at (0,0) from -b to b.

Here you should know the integral:
$\int \sqrt{1-x^{2}} d x=\frac{1}{2}\left[\mathrm{x} \sqrt{1-x^{2}}+\sin ^{-1}(\mathrm{x})\right]$

You can also do a trig substitute where $x=\sin \theta$, but that just leads to another integral you'll have to look up or memorize, so I prefer to not add the extra step.

$$
\begin{aligned}
& \int_{-}^{\sqrt{3} / 2} / 2 \\
& \frac{1}{1-x^{2}} d x= \\
& \frac{1}{2}\left[\mathrm{x} \sqrt{1-x^{2}}+\sin ^{-1}(\mathrm{x})\right] \text { from } \sqrt{3} / 2 \text { to }-\sqrt{3} / 2=
\end{aligned}
$$

$\frac{\sqrt{3}}{4}+\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$\frac{\sqrt{3}}{2}$ should look familiar. Everybody should memorize the $30-60-90$ (or $\pi / 6, \pi / 3, \pi / 2$) triangle. The sides are $1, \sqrt{3}$, and 2 . Thus:
$\sin (\pi / 6)=\cos (\pi / 3)=1 / 2$
$\sin (\pi / 3)=\cos (\pi / 6)=\frac{\sqrt{3}}{2}$

That said, getting back to the area under the circle, we have $\frac{\sqrt{3}}{4}+\frac{\pi}{3}=\sim 1.4802$
To find the area above the circle and the line $y=1$, consider the rectangular area and subtract the area of the circle from it:
$2 \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{4}-\frac{\pi}{3}=\frac{3 \sqrt{3}}{4}-\frac{\pi}{3}=\sim 0.2518$.

Next, find the rectangular area directly under the circle. Since the center of the circle is at (0 , $5 / 4)$, the bottom must bet at ($0,1 / 4$).
$2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{4}=\sim 0.4330$.

So, the entire area under the circle is:
$\frac{3 \sqrt{3}}{4}-\frac{\pi}{3}+\frac{\sqrt{3}}{4}=\sqrt{3}+\frac{\pi}{3}=\sim 0.6849$

So, the area between the circle and parabola equals:
$\sqrt{3}-\frac{\pi}{3}-\frac{\sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}-\frac{\pi}{3}=\sim 0.2518$.

Note that this is the same as the area above the circle over the same bounds. Interesting.

