Question

In the figure below, there is a quarter-circle and two semi-circles in a square of side length one. What is the area of the red region?

Hint
$\int \sqrt{1-x^{2}} \mathrm{dx}=\frac{1}{2}\left[x \sqrt{1-x^{2}}+\sin ^{-1}(x)\right]$

Solution

To aid in discussion, let's label various parts of the diagram, as follows:

First, let's find the point where the upper semicircle intersects the quarter circle. In other words, there regions B, E, and F meet.

If we assign the lower left corner of the diagram coordinates $(0,0)$, then the equation of the large circle is:
(1) $x^{2}+y^{2}=1$

The equation for the small circle centered at $(0.5,1)$ is:
(2) $(x-0.5)^{2}+(y-1)^{2}=1 / 4$

Let's solve for x in equation (1)
$\mathrm{x}^{2}=1-\mathrm{y}^{2}$
$\mathrm{x}=\sqrt{1-y^{2}}$
Now for equation (2)
$(x-0.5)^{2}=\frac{1}{4}-(y-1)^{2}$
$\mathrm{x}-\frac{1}{2}=\sqrt{\frac{1}{4}-(\mathrm{y}-1)^{2}}$
$x=\sqrt{\frac{1}{4}-(y-1)^{2}}+\frac{1}{2}$
$x=\sqrt{\frac{1}{4}-\left(y^{2}-2 y+1\right)}+\frac{1}{2}$
$x=\sqrt{-y^{2}+2 y-\frac{3}{4}}+\frac{1}{2}$

Now solve for x , to find where the two curves meet:
$\sqrt{1-y^{2}}=\sqrt{-y^{2}+2 y-\frac{3}{4}}+\frac{1}{2}$
$1-y^{2}=-y^{2}+2 y-\frac{3}{4}+\sqrt{-y^{2}+2 y-\frac{3}{4}}+\frac{1}{4}$

$$
\begin{aligned}
& 1=2 y-\frac{1}{2}+\sqrt{-y^{2}+2 y-\frac{3}{4}} \\
& \frac{3}{2}-2 y=\sqrt{-y^{2}+2 y-\frac{3}{4}} \\
& \frac{9}{4}-6 y+4 y^{2}=-y^{2}+2 y-\frac{3}{4} \\
& \frac{12}{4}-8 y+5 y^{2}=0 \\
& 5 y^{2}-8 y+3=0 \\
& y=1 \text { or } \frac{3}{5}
\end{aligned}
$$

Eyeballing the diagram, 1 clearly isn't right, so y must be $3 / 5$.
Substitute $\mathrm{y}=3 / 5$ in equation (1) gives us:
$x^{2}+\left(\frac{3}{5}\right)^{2}=1$
$\mathrm{x}^{2}=25 / 25-9 / 25$
$x^{2}=16 / 25$
$x=\frac{4}{5}$
So, where the upper semicircle intersects the quarter circle is at point $\left(\frac{4}{5}, \frac{3}{5}\right)$.

Now that we've found that, let's find the area under the quarter circle from $\mathrm{x}=0$ to $4 / 5$. In other words $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{F}$. This is where the hint comes in.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{F}=\int_{0}^{0.8} \sqrt{1-x^{2}} \mathrm{dx}= \\
& \frac{1}{2}\left[0.8 \sqrt{1-0.8^{2}}+\sin ^{-1}(0.8)-(0+0)\right]= \\
& \frac{1}{2}\left[0.48+\sin ^{-1}(0.8)\right]=\sim 0.703647609000806
\end{aligned}
$$

Next, let's find C and D, which we need to subtract out of that.
C is half of a circle of radius 0.5 . Thus $\mathrm{C}=\frac{1}{2} \bullet \pi \cdot(1 / 2)^{2}=\frac{\pi}{8}=\sim$
0.392699081698724 .

D is 0.25 less $1 / 4$ of a circle of radius 5 :
$\mathrm{D}=\frac{1}{4}-\left(\frac{1}{4}\right) \cdot \pi \cdot\left(\frac{1}{2}\right)^{2}=0.25-\frac{\pi}{16}=\sim 0.0536504591506379$.
Next, need to subtract F out of $A+B+C+D+F$.

Let's find that as $(\mathrm{E}+\mathrm{B}+\mathrm{F})-(\mathrm{B}+\mathrm{E})=\mathrm{F}$

To find E+B, let's invert the diagram and multiply the radius of the semicircle by 2 . After doing that, we will have:
$4 \cdot(\mathrm{E}+\mathrm{B})=\int_{0}^{0.6} \sqrt{1-x^{2}} d x$
$=\frac{1}{2}\left[0.6 \cdot \sqrt{1-(0.6)^{2}}+\sin ^{-1}(0.6)-0-0\right]$
Dividing by 4 :
$B+E=\frac{1}{8}\left[0.48+\sin ^{-1}(0.0)\right]=\sim 0.140437638599161$
$\mathrm{E}+\mathrm{B}+\mathrm{F}$ is rectangular, so easy to find as $1 \cdot 0.3=0.3$.

Thus, $\mathrm{F}=0.3-\frac{1}{8}\left[0.48+\sin ^{-1}(0.6)\right]=0.159562361400839$
Putting this all together:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{F}-\mathrm{C}-\mathrm{D}-\mathrm{F} \\
& =\frac{1}{2}\left[0.48+\sin ^{-1}(0.8)\right]-\frac{\pi}{8}-\left(0.25-\frac{\pi}{16}\right)-\left[0.3-\frac{1}{8}\left[0.48+\sin ^{-1}(0.6)\right]\right] \\
& =0.24+\sin ^{-1}(0.8) / 2-\frac{\pi}{8}-0.25+\frac{\pi}{16}-0.3+0.06+\sin ^{-1}(0.0) / 8 \\
& =-0.25-\frac{\pi}{16}+\sin ^{-1}(0.8) / 8+\sin ^{-1}(0.6) / 8+0.375 \cdot \sin ^{-1}(0.8)
\end{aligned}
$$

Next, let's pause to consider the 3-4-5 triangle. Note that:

$\sin (m)=0.8$
$\sin (n)=0.6$

In other words:
$\sin ^{-1}(0.8)=m$
$\sin ^{-1}(0.6)=\mathrm{n}$
$\mathrm{m}+\mathrm{n}=\pi / 2$

Getting back to the overall answer:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}=-0.25-\frac{\pi}{16}+\frac{\pi}{16}+\frac{3}{8} \cdot \sin ^{-1}(0.8) \\
& =\frac{3}{8} \cdot \sin ^{-1}(0.8)-\frac{1}{4} \\
& =\sim 0.0977357067506052
\end{aligned}
$$

