Question:

The figure above is a nonagon with side length one.

Which is more, $A B+A C$ or $A E$?

Answer: They are the same

Solution:

Add the following points to the diagram:
$\mathrm{O}=$ Center of nonagon
$F=$ Intersection of the lines created by extending $A B$ and $D E$.

Consider the triangle ABO . If you divide the nonagon into nine triangular slices, each slice will touch the center with an angle of $360 / 9=40$. The other two angles of each slice will be $(180-40) / 2=70$. Thus, $\angle A B O=70$.
$\angle A B C=2^{*} \angle A B O=140$, since triangles $A B O$ and $B C O$ are the same.
$\angle \mathrm{BAC}$ and $\angle \mathrm{BCA}$ are both equal to $(180-140) / 2=20$.
$\angle \mathrm{BCD}=\angle \mathrm{ABC}=140$.

Next, consider $\angle A C E$.

$$
\begin{aligned}
& \angle \mathrm{ACE}=\angle \mathrm{BCD}-2^{*} \angle \mathrm{CBD}=140-2^{*} 20=100 . \\
& \angle \mathrm{CAE}=\angle \mathrm{CEA}=(180-100) / 2=40 .
\end{aligned}
$$

Next, consider $\angle F A E$.
$\angle \mathrm{FAE}=\angle \mathrm{BAC}+\angle \mathrm{CAE}=20+40=60$

So, triangle AEF is equilateral! This is the "ah-ha" moment we need.

Since AEF is equilateral, $\mathrm{AE}=\mathrm{AF}=\mathrm{AB}+\mathrm{BF}$.

What is $B F$? Since $\angle A F E=60$, so must $\angle B F D$, so triangle $B D F$ is also equilateral. Thus, the three sides of BDF are the same: $\mathrm{BD}=\mathrm{BF}=\mathrm{DF}$.
$A E=A B+B F=A B+B D=A B+A C$.
Q.E.D.

