Question: What is the average number of rolls of two dice to achieve a total of 12 three consecutive times?

Answer: 47988

Solution:

Let:

$x=$ expected number of additional throws from starting point or after any roll that isn't a 12.
$y=$ expected number of additional throws after a single 12 in the previous throw.
$z=$ expected number of additional throws after two 12 's the previous two throws.

This turns into a Markov chain problem, as follows:

$$
\begin{aligned}
& \text { (1) } x=1+(35 / 36)^{*} x+(1 / 36)^{*} y \\
& \text { (2) } y=1+(35 / 36)^{*} x+(1 / 36)^{*} z \\
& \text { (3) } z=1+(35 / 36)^{*} x
\end{aligned}
$$

Substitute the value of z from equation (3) into z in equation (2):
$y=1+(35 / 36)^{*} x+(1 / 36)^{*}(1+(35 / 36))^{*} x$

Multiply both side by 36 :
$36 y=36+35 x+(1+(35 / 36))^{*} x$
Multiply again by 36:
$1296 y=1296+1260 x+(36+35 x)$
$1296 y=1295 x+1332$

$$
(4) y=(1332+1295 x) / 1296
$$

Substitute the value of y in equation (4) into y in equation (1):

$$
\text { (1) } x=1+(35 / 36)^{*} x+(1 / 36)^{*}(1332+1295 x) / 1296
$$

Multiply both sides by 1296:
$1296 x=1296+1260 x+(1 / 36)^{*}(1332+1295 x)$
Multiply both sides by 36:
$46656 x=46656+45360 x+1332+1295 x$
$x=47988$
Here are two expressions for x :
$x=36^{3}+36^{2}+36^{1}$
$x=\frac{36^{4}-1}{36-1}-1$

