On this page
Number of rolls table in craps
Introduction
One question I get asked a lot is "what is the probability of a shooter lasting x rolls in craps?" The following table answers that question for up to 50 rolls. The first column is the roll number. The second column is the probability of a seven-out on exactly that roll. The third column is the probability of surviving PAST that roll.
Craps Survival Table for 1 to 50 Rolls
Roll Number |
Probability Seven-Out |
Probability Survival |
---|---|---|
1 | 0.00000000 | 1.00000000 |
2 | 0.11111111 | 0.88888889 |
3 | 0.11676955 | 0.77211934 |
4 | 0.10476680 | 0.66735254 |
5 | 0.09122363 | 0.57612891 |
6 | 0.07891804 | 0.49721087 |
7 | 0.06816676 | 0.42904411 |
8 | 0.05885276 | 0.37019135 |
9 | 0.05080065 | 0.31939070 |
10 | 0.04384414 | 0.27554656 |
11 | 0.03783614 | 0.23771043 |
12 | 0.03264850 | 0.20506193 |
13 | 0.02817002 | 0.17689190 |
14 | 0.02430433 | 0.15258757 |
15 | 0.02096801 | 0.13161956 |
16 | 0.01808886 | 0.11353070 |
17 | 0.01560445 | 0.09792625 |
18 | 0.01346084 | 0.08446541 |
19 | 0.01161138 | 0.07285403 |
20 | 0.01001580 | 0.06283823 |
21 | 0.00863931 | 0.05419892 |
22 | 0.00745187 | 0.04674705 |
23 | 0.00642755 | 0.04031950 |
24 | 0.00554396 | 0.03477554 |
25 | 0.00478180 | 0.02999374 |
26 | 0.00412437 | 0.02586937 |
27 | 0.00355731 | 0.02231206 |
28 | 0.00306819 | 0.01924387 |
29 | 0.00264632 | 0.01659755 |
30 | 0.00228244 | 0.01431511 |
31 | 0.00196858 | 0.01234653 |
32 | 0.00169788 | 0.01064864 |
33 | 0.00146440 | 0.00918424 |
34 | 0.00126303 | 0.00792121 |
35 | 0.00108934 | 0.00683187 |
36 | 0.00093954 | 0.00589234 |
37 | 0.00081033 | 0.00508201 |
38 | 0.00069890 | 0.00438311 |
39 | 0.00060278 | 0.00378033 |
40 | 0.00051989 | 0.00326044 |
41 | 0.00044839 | 0.00281205 |
42 | 0.00038673 | 0.00242532 |
43 | 0.00033354 | 0.00209178 |
44 | 0.00028767 | 0.00180411 |
45 | 0.00024811 | 0.00155600 |
46 | 0.00021399 | 0.00134201 |
47 | 0.00018456 | 0.00115745 |
48 | 0.00015918 | 0.00099827 |
49 | 0.00013729 | 0.00086098 |
50 | 0.00011841 | 0.00074257 |
The next table shows the same information, but for up to 200 rolls. The probabilities get very small, so this table is in scientific notation.
Craps Survival Table for 1 to 200 Rolls
Roll Number |
Probability Seven-Out |
Probability Survival |
---|---|---|
1 | 0.000000E+00 | 1.000000E+00 |
2 | 1.111111E-01 | 8.888889E-01 |
3 | 1.167695E-01 | 7.721193E-01 |
4 | 1.047668E-01 | 6.673525E-01 |
5 | 9.122363E-02 | 5.761289E-01 |
6 | 7.891804E-02 | 4.972109E-01 |
7 | 6.816676E-02 | 4.290441E-01 |
8 | 5.885276E-02 | 3.701913E-01 |
9 | 5.080065E-02 | 3.193907E-01 |
10 | 4.384414E-02 | 2.755466E-01 |
11 | 3.783614E-02 | 2.377104E-01 |
12 | 3.264850E-02 | 2.050619E-01 |
13 | 2.817002E-02 | 1.768919E-01 |
14 | 2.430433E-02 | 1.525876E-01 |
15 | 2.096801E-02 | 1.316196E-01 |
16 | 1.808886E-02 | 1.135307E-01 |
17 | 1.560445E-02 | 9.792625E-02 |
18 | 1.346084E-02 | 8.446541E-02 |
19 | 1.161138E-02 | 7.285403E-02 |
20 | 1.001580E-02 | 6.283823E-02 |
21 | 8.639309E-03 | 5.419892E-02 |
22 | 7.451869E-03 | 4.674705E-02 |
23 | 6.427548E-03 | 4.031950E-02 |
24 | 5.543963E-03 | 3.477554E-02 |
25 | 4.781795E-03 | 2.999374E-02 |
26 | 4.124373E-03 | 2.586937E-02 |
27 | 3.557310E-03 | 2.231206E-02 |
28 | 3.068195E-03 | 1.924387E-02 |
29 | 2.646317E-03 | 1.659755E-02 |
30 | 2.282437E-03 | 1.431511E-02 |
31 | 1.968585E-03 | 1.234653E-02 |
32 | 1.697884E-03 | 1.064864E-02 |
33 | 1.464404E-03 | 9.184241E-03 |
34 | 1.263027E-03 | 7.921214E-03 |
35 | 1.089340E-03 | 6.831874E-03 |
36 | 9.395362E-04 | 5.892338E-03 |
37 | 8.103321E-04 | 5.082006E-03 |
38 | 6.988952E-04 | 4.383111E-03 |
39 | 6.027824E-04 | 3.780328E-03 |
40 | 5.198867E-04 | 3.260442E-03 |
41 | 4.483907E-04 | 2.812051E-03 |
42 | 3.867267E-04 | 2.425324E-03 |
43 | 3.335427E-04 | 2.091782E-03 |
44 | 2.876726E-04 | 1.804109E-03 |
45 | 2.481107E-04 | 1.555998E-03 |
46 | 2.139894E-04 | 1.342009E-03 |
47 | 1.845605E-04 | 1.157448E-03 |
48 | 1.591789E-04 | 9.982695E-04 |
49 | 1.372878E-04 | 8.609818E-04 |
50 | 1.184072E-04 | 7.425745E-04 |
51 | 1.021232E-04 | 6.404513E-04 |
52 | 8.807867E-05 | 5.523726E-04 |
53 | 7.596559E-05 | 4.764071E-04 |
54 | 6.551837E-05 | 4.108887E-04 |
55 | 5.650790E-05 | 3.543808E-04 |
56 | 4.873660E-05 | 3.056442E-04 |
57 | 4.203405E-05 | 2.636101E-04 |
58 | 3.625328E-05 | 2.273569E-04 |
59 | 3.126751E-05 | 1.960893E-04 |
60 | 2.696741E-05 | 1.691219E-04 |
61 | 2.325869E-05 | 1.458632E-04 |
62 | 2.006001E-05 | 1.258032E-04 |
63 | 1.730124E-05 | 1.085020E-04 |
64 | 1.492187E-05 | 9.358012E-05 |
65 | 1.286972E-05 | 8.071040E-05 |
66 | 1.109980E-05 | 6.961061E-05 |
67 | 9.573283E-06 | 6.003732E-05 |
68 | 8.256706E-06 | 5.178062E-05 |
69 | 7.121193E-06 | 4.465942E-05 |
70 | 6.141842E-06 | 3.851758E-05 |
71 | 5.297178E-06 | 3.322040E-05 |
72 | 4.568677E-06 | 2.865173E-05 |
73 | 3.940364E-06 | 2.471136E-05 |
74 | 3.398461E-06 | 2.131290E-05 |
75 | 2.931083E-06 | 1.838182E-05 |
76 | 2.527982E-06 | 1.585384E-05 |
77 | 2.180319E-06 | 1.367352E-05 |
78 | 1.880468E-06 | 1.179305E-05 |
79 | 1.621854E-06 | 1.017120E-05 |
80 | 1.398806E-06 | 8.772390E-06 |
81 | 1.206434E-06 | 7.565956E-06 |
82 | 1.040518E-06 | 6.525439E-06 |
83 | 8.974191E-07 | 5.628020E-06 |
84 | 7.740004E-07 | 4.854019E-06 |
85 | 6.675550E-07 | 4.186464E-06 |
86 | 5.757487E-07 | 3.610715E-06 |
87 | 4.965681E-07 | 3.114147E-06 |
88 | 4.282770E-07 | 2.685870E-06 |
89 | 3.693777E-07 | 2.316493E-06 |
90 | 3.185785E-07 | 1.997914E-06 |
91 | 2.747656E-07 | 1.723148E-06 |
92 | 2.369781E-07 | 1.486170E-06 |
93 | 2.043874E-07 | 1.281783E-06 |
94 | 1.762788E-07 | 1.105504E-06 |
95 | 1.520358E-07 | 9.534683E-07 |
96 | 1.311269E-07 | 8.223414E-07 |
97 | 1.130935E-07 | 7.092478E-07 |
98 | 9.754019E-08 | 6.117076E-07 |
99 | 8.412586E-08 | 5.275818E-07 |
100 | 7.255634E-08 | 4.550254E-07 |
101 | 6.257794E-08 | 3.924475E-07 |
102 | 5.397183E-08 | 3.384757E-07 |
103 | 4.654929E-08 | 2.919264E-07 |
104 | 4.014754E-08 | 2.517788E-07 |
105 | 3.462620E-08 | 2.171526E-07 |
106 | 2.986419E-08 | 1.872885E-07 |
107 | 2.575708E-08 | 1.615314E-07 |
108 | 2.221480E-08 | 1.393166E-07 |
109 | 1.915969E-08 | 1.201569E-07 |
110 | 1.652473E-08 | 1.036322E-07 |
111 | 1.425214E-08 | 8.938002E-08 |
112 | 1.229210E-08 | 7.708792E-08 |
113 | 1.060161E-08 | 6.648631E-08 |
114 | 9.143612E-09 | 5.734269E-08 |
115 | 7.886126E-09 | 4.945657E-08 |
116 | 6.801576E-09 | 4.265499E-08 |
117 | 5.866181E-09 | 3.678881E-08 |
118 | 5.059427E-09 | 3.172938E-08 |
119 | 4.363623E-09 | 2.736576E-08 |
120 | 3.763510E-09 | 2.360225E-08 |
121 | 3.245929E-09 | 2.035632E-08 |
122 | 2.799529E-09 | 1.755679E-08 |
123 | 2.414520E-09 | 1.514227E-08 |
124 | 2.082460E-09 | 1.305981E-08 |
125 | 1.796067E-09 | 1.126375E-08 |
126 | 1.549061E-09 | 9.714685E-09 |
127 | 1.336024E-09 | 8.378661E-09 |
128 | 1.152286E-09 | 7.226375E-09 |
129 | 9.938163E-10 | 6.232559E-09 |
130 | 8.571405E-10 | 5.375419E-09 |
131 | 7.392611E-10 | 4.636157E-09 |
132 | 6.375933E-10 | 3.998564E-09 |
133 | 5.499075E-10 | 3.448657E-09 |
134 | 4.742808E-10 | 2.974376E-09 |
135 | 4.090547E-10 | 2.565321E-09 |
136 | 3.527990E-10 | 2.212522E-09 |
137 | 3.042799E-10 | 1.908242E-09 |
138 | 2.624334E-10 | 1.645809E-09 |
139 | 2.263419E-10 | 1.419467E-09 |
140 | 1.952140E-10 | 1.224253E-09 |
141 | 1.683669E-10 | 1.055886E-09 |
142 | 1.452120E-10 | 9.106740E-10 |
143 | 1.252416E-10 | 7.854324E-10 |
144 | 1.080176E-10 | 6.774148E-10 |
145 | 9.316232E-11 | 5.842525E-10 |
146 | 8.035006E-11 | 5.039024E-10 |
147 | 6.929981E-11 | 4.346026E-10 |
148 | 5.976927E-11 | 3.748334E-10 |
149 | 5.154943E-11 | 3.232839E-10 |
150 | 4.446003E-11 | 2.788239E-10 |
151 | 3.834561E-11 | 2.404783E-10 |
152 | 3.307208E-11 | 2.074062E-10 |
153 | 2.852380E-11 | 1.788824E-10 |
154 | 2.460103E-11 | 1.542814E-10 |
155 | 2.121774E-11 | 1.330637E-10 |
156 | 1.829975E-11 | 1.147639E-10 |
157 | 1.578305E-11 | 9.898086E-11 |
158 | 1.361247E-11 | 8.536839E-11 |
159 | 1.174039E-11 | 7.362800E-11 |
160 | 1.012578E-11 | 6.350222E-11 |
161 | 8.733222E-12 | 5.476899E-11 |
162 | 7.532174E-12 | 4.723682E-11 |
163 | 6.496303E-12 | 4.074052E-11 |
164 | 5.602891E-12 | 3.513763E-11 |
165 | 4.832346E-12 | 3.030528E-11 |
166 | 4.167772E-12 | 2.613751E-11 |
167 | 3.594594E-12 | 2.254292E-11 |
168 | 3.100243E-12 | 1.944267E-11 |
169 | 2.673878E-12 | 1.676880E-11 |
170 | 2.306150E-12 | 1.446265E-11 |
171 | 1.988993E-12 | 1.247365E-11 |
172 | 1.715455E-12 | 1.075820E-11 |
173 | 1.479535E-12 | 9.278663E-12 |
174 | 1.276060E-12 | 8.002603E-12 |
175 | 1.100568E-12 | 6.902035E-12 |
176 | 9.492110E-13 | 5.952824E-12 |
177 | 8.186696E-13 | 5.134155E-12 |
178 | 7.060810E-13 | 4.428074E-12 |
179 | 6.089764E-13 | 3.819097E-12 |
180 | 5.252261E-13 | 3.293871E-12 |
181 | 4.529938E-13 | 2.840877E-12 |
182 | 3.906952E-13 | 2.450182E-12 |
183 | 3.369644E-13 | 2.113218E-12 |
184 | 2.906229E-13 | 1.822595E-12 |
185 | 2.506546E-13 | 1.571940E-12 |
186 | 2.161831E-13 | 1.355757E-12 |
187 | 1.864522E-13 | 1.169305E-12 |
188 | 1.608101E-13 | 1.008495E-12 |
189 | 1.386945E-13 | 8.698004E-13 |
190 | 1.196204E-13 | 7.501800E-13 |
191 | 1.031694E-13 | 6.470106E-13 |
192 | 8.898094E-14 | 5.580296E-13 |
193 | 7.674372E-14 | 4.812859E-13 |
194 | 6.618945E-14 | 4.150965E-13 |
195 | 5.708666E-14 | 3.580098E-13 |
196 | 4.923575E-14 | 3.087741E-13 |
197 | 4.246454E-14 | 2.663095E-13 |
198 | 3.662455E-14 | 2.296850E-13 |
199 | 3.158771E-14 | 1.980973E-13 |
200 | 2.724357E-14 | 1.708537E-13 |
The mean number of rolls per shooter is 8.525510.
For how I solved this problem, please see my MathProblems.info site, problem 204.