On this page
Plinko
On this page
Introduction
Plinko is the general term for a game involving a ball or disk that falls randomly down a grid of pegs, known as a Galton Board, to land in a random spot at the bottom. Such boards are also a good way to illustrate a Gaussian curve at science museums. In the case of the casino game, the concept is the same, but where the ball lands will determine how much the player wins/loses.
This page presents three variants of Plinko I have seen, by CryptoGames, BGAMING, and BetFury.
Provably Fair Casinos
CryptoGames Rules
Following are the rules for how the game is played at CryptoGames.
- The player chooses a bet and a pay table (green, red, blue, or yellow).
- Bets are made in "credits." A credit costs 0.000001 BTC (Bitcoin) and the minimum bet is 10 credits.
- A ball is dropped from above a triangular field of pegs, with 16 rows and 17 possible places to land at the bottom.
- At each row, the ball will hit a peg and may either go left or right, each with a 50% chance.
- When the ball reaches one of the 17 possible resting spots at the bottom, the player will be paid according to amount bet, where the ball landed, and pay table chosen.
Per the concept of "provably fair gaming" common to Cryto-casinos, the final outcome is determined in advance. With 16 rows of pegs, there are 2^16 = 65,536 possible paths the ball can take. The final outcome is based on a random number from 0 to 65,535, which gets mapped according to one of the positions at the bottom of the grid. I have checked and the mapping is done correctly, according to the natural odds of a fair Plinko board.
The following table shows the number of combinations for each outcome, the range associated with it, and what each of the four pay tables pay for that position. All pays are on a "for one" basis.
Plinko Pay Table
Position | Combinations | Range | Green Pays |
Red Pays |
Blue Pays |
Yellow Pays |
---|---|---|---|---|---|---|
0 | 1 | 0 to 0 | 10 | 20 | 50 | 650 |
1 | 16 | 1 to 16 | 8 | 7 | 8 | 30 |
2 | 120 | 17 to 136 | 6 | 5 | 3 | 7 |
3 | 560 | 137 to 696 | 3 | 3 | 2 | 3 |
4 | 1,820 | 697 to 2516 | 2 | 2 | 1.4 | 1.5 |
5 | 4,368 | 2517 to 6884 | 1.3 | 1.1 | 1.2 | 1.2 |
6 | 8,008 | 6885 to 14892 | 1 | 1 | 1.1 | 1 |
7 | 11,440 | 14893 to 26332 | 0.8 | 0.6 | 1 | 0.7 |
8 | 12,870 | 26333 to 39202 | 0.5 | 1 | 0.4 | 0.7 |
9 | 11,440 | 39203 to 50642 | 0.8 | 0.6 | 1 | 0.7 |
10 | 8,008 | 50643 to 58650 | 1 | 1 | 1.1 | 1 |
11 | 4,368 | 58651 to 63018 | 1.3 | 1.1 | 1.2 | 1.2 |
12 | 1,820 | 63019 to 64838 | 2 | 2 | 1.4 | 1.5 |
13 | 560 | 64839 to 65398 | 3 | 3 | 2 | 3 |
14 | 120 | 65399 to 65518 | 6 | 5 | 3 | 7 |
15 | 16 | 65519 to 65534 | 8 | 7 | 8 | 30 |
16 | 1 | 65535 to 65535 | 10 | 20 | 50 | 650 |
Analysis
The following table shows my analysis of the Green pay table. The lower right cell shows an expected return of 98.37%.
Green Pay Table Analysis
Position | Combinations | Pays | Probability | Return |
---|---|---|---|---|
0 | 1 | 10 | 0.000015 | 0.000153 |
1 | 16 | 8 | 0.000244 | 0.001953 |
2 | 120 | 6 | 0.001831 | 0.010986 |
3 | 560 | 3 | 0.008545 | 0.025635 |
4 | 1,820 | 2 | 0.027771 | 0.055542 |
5 | 4,368 | 1.3 | 0.066650 | 0.086646 |
6 | 8,008 | 1 | 0.122192 | 0.122192 |
7 | 11,440 | 0.8 | 0.174561 | 0.139648 |
8 | 12,870 | 0.5 | 0.196381 | 0.098190 |
9 | 11,440 | 0.8 | 0.174561 | 0.139648 |
10 | 8,008 | 1 | 0.122192 | 0.122192 |
11 | 4,368 | 1.3 | 0.066650 | 0.086646 |
12 | 1,820 | 2 | 0.027771 | 0.055542 |
13 | 560 | 3 | 0.008545 | 0.025635 |
14 | 120 | 6 | 0.001831 | 0.010986 |
15 | 16 | 8 | 0.000244 | 0.001953 |
16 | 1 | 10 | 0.000015 | 0.000153 |
Total | 65,536 | 1.000000 | 0.983701 |
The following table shows my analysis of the Red pay table. The lower right cell shows an expected return of 98.16%.
Red Pay Table Analysis
Position | Combinations | Pays | Probability | Return |
---|---|---|---|---|
0 | 1 | 20 | 0.000015 | 0.000305 |
1 | 16 | 7 | 0.000244 | 0.001709 |
2 | 120 | 5 | 0.001831 | 0.009155 |
3 | 560 | 3 | 0.008545 | 0.025635 |
4 | 1,820 | 2 | 0.027771 | 0.055542 |
5 | 4,368 | 1.1 | 0.066650 | 0.073315 |
6 | 8,008 | 1 | 0.122192 | 0.122192 |
7 | 11,440 | 0.6 | 0.174561 | 0.104736 |
8 | 12,870 | 1 | 0.196381 | 0.196381 |
9 | 11,440 | 0.6 | 0.174561 | 0.104736 |
10 | 8,008 | 1 | 0.122192 | 0.122192 |
11 | 4,368 | 1.1 | 0.066650 | 0.073315 |
12 | 1,820 | 2 | 0.027771 | 0.055542 |
13 | 560 | 3 | 0.008545 | 0.025635 |
14 | 120 | 5 | 0.001831 | 0.009155 |
15 | 16 | 7 | 0.000244 | 0.001709 |
16 | 1 | 20 | 0.000015 | 0.000305 |
Total | 65,536 | 1.000000 | 0.981561 |
The following table shows my analysis of the Blue pay table. The lower right cell shows an expected return of 98.37%.
Blue Pay Table Analysis
Position | Combinations | Pays | Probability | Return |
---|---|---|---|---|
0 | 1 | 50 | 0.000015 | 0.000763 |
1 | 16 | 8 | 0.000244 | 0.001953 |
2 | 120 | 3 | 0.001831 | 0.005493 |
3 | 560 | 2 | 0.008545 | 0.017090 |
4 | 1,820 | 1.4 | 0.027771 | 0.038879 |
5 | 4,368 | 1.2 | 0.066650 | 0.079980 |
6 | 8,008 | 1.1 | 0.122192 | 0.134412 |
7 | 11,440 | 1 | 0.174561 | 0.174561 |
8 | 12,870 | 0.4 | 0.196381 | 0.078552 |
9 | 11,440 | 1 | 0.174561 | 0.174561 |
10 | 8,008 | 1.1 | 0.122192 | 0.134412 |
11 | 4,368 | 1.2 | 0.066650 | 0.079980 |
12 | 1,820 | 1.4 | 0.027771 | 0.038879 |
13 | 560 | 2 | 0.008545 | 0.017090 |
14 | 120 | 3 | 0.001831 | 0.005493 |
15 | 16 | 8 | 0.000244 | 0.001953 |
16 | 1 | 50 | 0.000015 | 0.000763 |
Total | 65,536 | 1.000000 | 0.984814 |
The following table shows my analysis of the Yellow pay table. The lower right cell shows an expected return of 98.09%.
Yellow Pay Table Analysis
Position | Combinations | Pays | Probability | Return |
---|---|---|---|---|
0 | 1 | 650 | 0.000015 | 0.009918 |
1 | 16 | 30 | 0.000244 | 0.007324 |
2 | 120 | 7 | 0.001831 | 0.012817 |
3 | 560 | 3 | 0.008545 | 0.025635 |
4 | 1,820 | 1.5 | 0.027771 | 0.041656 |
5 | 4,368 | 1.2 | 0.066650 | 0.079980 |
6 | 8,008 | 1 | 0.122192 | 0.122192 |
7 | 11,440 | 0.7 | 0.174561 | 0.122192 |
8 | 12,870 | 0.7 | 0.196381 | 0.137466 |
9 | 11,440 | 0.7 | 0.174561 | 0.122192 |
10 | 8,008 | 1 | 0.122192 | 0.122192 |
11 | 4,368 | 1.2 | 0.066650 | 0.079980 |
12 | 1,820 | 1.5 | 0.027771 | 0.041656 |
13 | 560 | 3 | 0.008545 | 0.025635 |
14 | 120 | 7 | 0.001831 | 0.012817 |
15 | 16 | 30 | 0.000244 | 0.007324 |
16 | 1 | 650 | 0.000015 | 0.009918 |
Total | 65,536 | 1.000000 | 0.980899 |
Summary
The following table shows the return and standard deviation for each pay table. The greatest return is for the Blue pay table, at 98.48%.
Summary
Pay Table | Return | Standard Deviation |
---|---|---|
Green | 98.37% | 0.562711 |
Red | 98.16% | 0.517632 |
Blue | 98.48% | 0.464829 |
Yellow | 98.09% | 3.678698 |
Probably Fair
The way "provably fair" mechanism works, at least at Crypto.Games, is as follows:
- Enter a string consisting of the casino hash followed by the player hash into a SHA512 hash generator, like this one.
- Convert the first four characters in the hash from step 1 into a hexi-decimal to base-10 converter, like this one.
- The result of step 2 will be an integer from 0 to 65535 (164-1). This result is mapped to an outcome according to the ranges in the first table of this page.
The way this is "provably fair," is the casino will provide the hash of its own seed before you bet, ensuring the casino's contribution to the outcome was predestined, assuming the casino seed provided after the bet matches that hash.
If this sounds Greek to you, I go through the concepts and terminology of using cryptography for fair gaming in my page on Dice (Encrypted Version) more slowly.
If you want to simplify the process above, I welcome you to use this program I saved at PHP Sandbox. Just enter the Server Seed on line 4, the Client Seed on line 5, and click "execute code." The game outcome will be in the Results box below the code.
You may also see my code by clicking the button below.
$server_seed = "k34pQFblHvQAJ33zZZHCQtlFlhHb4KTtw2qhOahC";
$client_seed = "6VoqO9MXdSp5xSmiq2L6xcvn2XVvFWVLkC0TtLwc";
$combined_seed = $server_seed.$client_seed;
echo "Combined seed = $combined_seed\n";
$combined_hash = hash('sha512', $combined_seed);
echo "Hash of combined seed = $combined_hash\n";
$first_four=substr($combined_hash,0,4);
echo "First four characters = $first_four\n";
$hex_to_dec=hexdec($first_four);
echo "Converted to decimal = $hex_to_dec\n";
$weight_array=array(1,17,137,697,2517,6885,14893,26333,39203,50643,58651,63019,64839,65399,65519,65535,65536);
$green_array=array(10,8,6,3,2,1.3,1,0.8,0.5,0.8,1,1.3,2,3,6,8,10);
$red_array=array(20,7,5,3,2,1.1,1,0.6,1,0.6,1,1.1,2,3,5,7,20);
$blue_array=array(50,8,3,2,1.4,1.2,1.1,1,0.4,1,1.1,1.2,1.4,2,3,8,50);
$yellow_array=array(650,30,7,3,1.5,1.2,1,0.7,0.7,0.7,1,1.2,1.5,3,7,30,650);
$i=0;
while ( $hex_to_dec >= $weight_array[$i] ) {
$i++;
}
echo "Green win = \t$green_array[$i]\n";
echo "Red win = \t$red_array[$i]\n";
echo "Blue win = \t$blue_array[$i]\n";
echo "Yellow win = \t$yellow_array[$i]\n";
// Procedure
// 1. Join server and client seeds, server seed first.
// 2. Generate a SHA-512 hash of the string from step 1.
// 3. Convert first FOUR characters of the hash from hexidecimal to decimal.
// 4. Convert result from step 3 to a win per the arrays given.
?>
BGAMING Rules
BGAMING follows the same concept of balls dropping down a Galton Board. The player may choose from 8 to 16 rows as well as low, medium, or high volatility.
To keep this page from running too long, I present one table for each number of rows, showing the pay tables and return for all three pay tables. The Position column shows how many positions away from the left-most position the ball lands.
16 Rows
Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
|
---|---|---|---|---|---|---|---|---|
0 | 16 | 110 | 1000 | 1 | 0.000015 | 0.001678 | 0.001678 | 0.015259 |
1 | 9 | 41 | 130 | 16 | 0.000244 | 0.010010 | 0.010010 | 0.031738 |
2 | 2 | 10 | 26 | 120 | 0.001831 | 0.018311 | 0.018311 | 0.047607 |
3 | 1.4 | 5 | 9 | 560 | 0.008545 | 0.042725 | 0.042725 | 0.076904 |
4 | 1.4 | 3 | 4 | 1,820 | 0.027771 | 0.083313 | 0.083313 | 0.111084 |
5 | 1.2 | 1.5 | 2 | 4,368 | 0.066650 | 0.099976 | 0.099976 | 0.133301 |
6 | 1.1 | 1 | 0.2 | 8,008 | 0.122192 | 0.122192 | 0.122192 | 0.024438 |
7 | 1 | 0.5 | 0.2 | 11,440 | 0.174561 | 0.087280 | 0.087280 | 0.034912 |
8 | 0.5 | 0.3 | 0.2 | 12,870 | 0.196381 | 0.058914 | 0.058914 | 0.039276 |
9 | 1 | 0.5 | 0.2 | 11,440 | 0.174561 | 0.087280 | 0.087280 | 0.034912 |
10 | 1.1 | 1 | 0.2 | 8,008 | 0.122192 | 0.122192 | 0.122192 | 0.024438 |
11 | 1.2 | 1.5 | 2 | 4,368 | 0.066650 | 0.099976 | 0.099976 | 0.133301 |
12 | 1.4 | 3 | 4 | 1,820 | 0.027771 | 0.083313 | 0.083313 | 0.111084 |
13 | 1.4 | 5 | 9 | 560 | 0.008545 | 0.042725 | 0.042725 | 0.076904 |
14 | 2 | 10 | 26 | 120 | 0.001831 | 0.018311 | 0.018311 | 0.047607 |
15 | 9 | 41 | 130 | 16 | 0.000244 | 0.010010 | 0.010010 | 0.031738 |
16 | 16 | 110 | 1000 | 1 | 0.000015 | 0.001678 | 0.001678 | 0.015259 |
Total | 65,536 | 1.000000 | 0.989883 | 0.989883 | 0.989764 |
15 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 15 | 88 | 620 | 1 | 0.000031 | 0.002686 | 0.002686 | 0.018921 |
1 | 8 | 18 | 83 | 15 | 0.000458 | 0.008240 | 0.008240 | 0.037994 |
2 | 3 | 11 | 27 | 105 | 0.003204 | 0.035248 | 0.035248 | 0.086517 |
3 | 2 | 5 | 8 | 455 | 0.013885 | 0.069427 | 0.069427 | 0.111084 |
4 | 1.5 | 3 | 3 | 1,365 | 0.041656 | 0.124969 | 0.124969 | 0.124969 |
5 | 1.1 | 1.3 | 0.5 | 3,003 | 0.091644 | 0.119138 | 0.119138 | 0.045822 |
6 | 1 | 0.5 | 0.2 | 5,005 | 0.152740 | 0.076370 | 0.076370 | 0.030548 |
7 | 0.7 | 0.3 | 0.2 | 6,435 | 0.196381 | 0.058914 | 0.058914 | 0.039276 |
8 | 0.7 | 0.3 | 0.2 | 6,435 | 0.196381 | 0.058914 | 0.058914 | 0.039276 |
9 | 1 | 0.5 | 0.2 | 5,005 | 0.152740 | 0.076370 | 0.076370 | 0.030548 |
10 | 1.1 | 1.3 | 0.5 | 3,003 | 0.091644 | 0.119138 | 0.119138 | 0.045822 |
11 | 1.5 | 3 | 3 | 1,365 | 0.041656 | 0.124969 | 0.124969 | 0.124969 |
12 | 2 | 5 | 8 | 455 | 0.013885 | 0.069427 | 0.069427 | 0.111084 |
13 | 3 | 11 | 27 | 105 | 0.003204 | 0.035248 | 0.035248 | 0.086517 |
14 | 8 | 18 | 83 | 15 | 0.000458 | 0.008240 | 0.008240 | 0.037994 |
15 | 15 | 88 | 620 | 1 | 0.000031 | 0.002686 | 0.002686 | 0.018921 |
Total | 32,768 | 1.000000 | 0.989984 | 0.989984 | 0.990265 |
14 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 7.1 | 58 | 420 | 1 | 0.000061 | 0.003540 | 0.003540 | 0.025635 |
1 | 4 | 15 | 56 | 14 | 0.000854 | 0.012817 | 0.012817 | 0.047852 |
2 | 1.9 | 7 | 18 | 91 | 0.005554 | 0.038879 | 0.038879 | 0.099976 |
3 | 1.4 | 4 | 5 | 364 | 0.022217 | 0.088867 | 0.088867 | 0.111084 |
4 | 1.3 | 1.9 | 1.9 | 1,001 | 0.061096 | 0.116083 | 0.116083 | 0.116083 |
5 | 1.1 | 1 | 0.3 | 2,002 | 0.122192 | 0.122192 | 0.122192 | 0.036658 |
6 | 1 | 0.5 | 0.2 | 3,003 | 0.183289 | 0.091644 | 0.091644 | 0.036658 |
7 | 0.5 | 0.2 | 0.2 | 3,432 | 0.209473 | 0.041895 | 0.041895 | 0.041895 |
8 | 1 | 0.5 | 0.2 | 3,003 | 0.183289 | 0.091644 | 0.091644 | 0.036658 |
9 | 1.1 | 1 | 0.3 | 2,002 | 0.122192 | 0.122192 | 0.122192 | 0.036658 |
10 | 1.3 | 1.9 | 1.9 | 1,001 | 0.061096 | 0.116083 | 0.116083 | 0.116083 |
11 | 1.4 | 4 | 5 | 364 | 0.022217 | 0.088867 | 0.088867 | 0.111084 |
12 | 1.9 | 7 | 18 | 91 | 0.005554 | 0.038879 | 0.038879 | 0.099976 |
13 | 4 | 15 | 56 | 14 | 0.000854 | 0.012817 | 0.012817 | 0.047852 |
14 | 7.1 | 58 | 420 | 1 | 0.000061 | 0.003540 | 0.003540 | 0.025635 |
Total | 16,384 | 1.000000 | 0.989941 | 0.989941 | 0.989783 |
13 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 8.1 | 43 | 260 | 1 | 0.000122 | 0.005249 | 0.005249 | 0.031738 |
1 | 4 | 13 | 37 | 13 | 0.001587 | 0.020630 | 0.020630 | 0.058716 |
2 | 3 | 6 | 11 | 78 | 0.009521 | 0.057129 | 0.057129 | 0.104736 |
3 | 1.9 | 3 | 4 | 286 | 0.034912 | 0.104736 | 0.104736 | 0.139648 |
4 | 1.2 | 1.3 | 1 | 715 | 0.087280 | 0.113464 | 0.113464 | 0.087280 |
5 | 0.9 | 0.7 | 0.2 | 1,287 | 0.157104 | 0.109973 | 0.109973 | 0.031421 |
6 | 0.7 | 0.4 | 0.2 | 1,716 | 0.209473 | 0.083789 | 0.083789 | 0.041895 |
7 | 0.7 | 0.4 | 0.2 | 1,716 | 0.209473 | 0.083789 | 0.083789 | 0.041895 |
8 | 0.9 | 0.7 | 0.2 | 1,287 | 0.157104 | 0.109973 | 0.109973 | 0.031421 |
9 | 1.2 | 1.3 | 1 | 715 | 0.087280 | 0.113464 | 0.113464 | 0.087280 |
10 | 1.9 | 3 | 4 | 286 | 0.034912 | 0.104736 | 0.104736 | 0.139648 |
11 | 3 | 6 | 11 | 78 | 0.009521 | 0.057129 | 0.057129 | 0.104736 |
12 | 4 | 13 | 37 | 13 | 0.001587 | 0.020630 | 0.020630 | 0.058716 |
13 | 8.1 | 43 | 260 | 1 | 0.000122 | 0.005249 | 0.005249 | 0.031738 |
Total | 8,192 | 1.000000 | 0.989941 | 0.989941 | 0.990869 |
12 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 10 | 33 | 170 | 1 | 0.000244 | 0.008057 | 0.008057 | 0.041504 |
1 | 3 | 11 | 24 | 12 | 0.002930 | 0.032227 | 0.032227 | 0.070313 |
2 | 1.6 | 4 | 8.1 | 66 | 0.016113 | 0.064453 | 0.064453 | 0.130518 |
3 | 1.4 | 2 | 2 | 220 | 0.053711 | 0.107422 | 0.107422 | 0.107422 |
4 | 1.1 | 1.1 | 0.7 | 495 | 0.120850 | 0.132935 | 0.132935 | 0.084595 |
5 | 1 | 0.6 | 0.2 | 792 | 0.193359 | 0.116016 | 0.116016 | 0.038672 |
6 | 0.5 | 0.3 | 0.2 | 924 | 0.225586 | 0.067676 | 0.067676 | 0.045117 |
7 | 1 | 0.6 | 0.2 | 792 | 0.193359 | 0.116016 | 0.116016 | 0.038672 |
8 | 1.1 | 1.1 | 0.7 | 495 | 0.120850 | 0.132935 | 0.132935 | 0.084595 |
9 | 1.4 | 2 | 2 | 220 | 0.053711 | 0.107422 | 0.107422 | 0.107422 |
10 | 1.6 | 4 | 8.1 | 66 | 0.016113 | 0.064453 | 0.064453 | 0.130518 |
11 | 3 | 11 | 24 | 12 | 0.002930 | 0.032227 | 0.032227 | 0.070313 |
12 | 10 | 33 | 170 | 1 | 0.000244 | 0.008057 | 0.008057 | 0.041504 |
Total | 4,096 | 1.000000 | 0.989893 | 0.989893 | 0.991162 |
11 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 8.4 | 24 | 120 | 1 | 0.000488 | 0.011719 | 0.011719 | 0.058594 |
1 | 3 | 6 | 14 | 11 | 0.005371 | 0.032227 | 0.032227 | 0.075195 |
2 | 1.9 | 3 | 5.2 | 55 | 0.026855 | 0.080566 | 0.080566 | 0.139648 |
3 | 1.3 | 1.8 | 1.4 | 165 | 0.080566 | 0.145020 | 0.145020 | 0.112793 |
4 | 1 | 0.7 | 0.4 | 330 | 0.161133 | 0.112793 | 0.112793 | 0.064453 |
5 | 0.7 | 0.5 | 0.2 | 462 | 0.225586 | 0.112793 | 0.112793 | 0.045117 |
6 | 0.7 | 0.5 | 0.2 | 462 | 0.225586 | 0.112793 | 0.112793 | 0.045117 |
7 | 1 | 0.7 | 0.4 | 330 | 0.161133 | 0.112793 | 0.112793 | 0.064453 |
8 | 1.3 | 1.8 | 1.4 | 165 | 0.080566 | 0.145020 | 0.145020 | 0.112793 |
9 | 1.9 | 3 | 5.2 | 55 | 0.026855 | 0.080566 | 0.080566 | 0.139648 |
10 | 3 | 6 | 14 | 11 | 0.005371 | 0.032227 | 0.032227 | 0.075195 |
11 | 8.4 | 24 | 120 | 1 | 0.000488 | 0.011719 | 0.011719 | 0.058594 |
Total | 2,048 | 1.000000 | 0.990234 | 0.990234 | 0.991602 |
10 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 8.9 | 22 | 76 | 1 | 0.000977 | 0.021484 | 0.021484 | 0.074219 |
1 | 3 | 5 | 10 | 10 | 0.009766 | 0.048828 | 0.048828 | 0.097656 |
2 | 1.4 | 2 | 3 | 45 | 0.043945 | 0.087891 | 0.087891 | 0.131836 |
3 | 1.1 | 1.4 | 0.9 | 120 | 0.117188 | 0.164063 | 0.164063 | 0.105469 |
4 | 1 | 0.6 | 0.3 | 210 | 0.205078 | 0.123047 | 0.123047 | 0.061523 |
5 | 0.5 | 0.4 | 0.2 | 252 | 0.246094 | 0.098438 | 0.098438 | 0.049219 |
6 | 1 | 0.6 | 0.3 | 210 | 0.205078 | 0.123047 | 0.123047 | 0.061523 |
7 | 1.1 | 1.4 | 0.9 | 120 | 0.117188 | 0.164063 | 0.164063 | 0.105469 |
8 | 1.4 | 2 | 3 | 45 | 0.043945 | 0.087891 | 0.087891 | 0.131836 |
9 | 3 | 5 | 10 | 10 | 0.009766 | 0.048828 | 0.048828 | 0.097656 |
10 | 8.9 | 22 | 76 | 1 | 0.000977 | 0.021484 | 0.021484 | 0.074219 |
Total | 1,024 | 1.000000 | 0.989063 | 0.989063 | 0.990625 |
9 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 5.6 | 18 | 43 | 1 | 0.001953 | 0.035156 | 0.035156 | 0.083984 |
1 | 2 | 4 | 7 | 9 | 0.017578 | 0.070313 | 0.070313 | 0.123047 |
2 | 1.6 | 1.7 | 2 | 36 | 0.070313 | 0.119531 | 0.119531 | 0.140625 |
3 | 1 | 0.9 | 0.6 | 84 | 0.164063 | 0.147656 | 0.147656 | 0.098438 |
4 | 0.7 | 0.5 | 0.2 | 126 | 0.246094 | 0.123047 | 0.123047 | 0.049219 |
5 | 0.7 | 0.5 | 0.2 | 126 | 0.246094 | 0.123047 | 0.123047 | 0.049219 |
6 | 1 | 0.9 | 0.6 | 84 | 0.164063 | 0.147656 | 0.147656 | 0.098438 |
7 | 1.6 | 1.7 | 2 | 36 | 0.070313 | 0.119531 | 0.119531 | 0.140625 |
8 | 2 | 4 | 7 | 9 | 0.017578 | 0.070313 | 0.070313 | 0.123047 |
9 | 5.6 | 18 | 43 | 1 | 0.001953 | 0.035156 | 0.035156 | 0.083984 |
Total | 512 | 1.000000 | 0.991406 | 0.991406 | 0.990625 |
8 Rows
Position | Low Risk Pays |
Medium Risk Pays |
High Risk Pays |
Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 5.6 | 13 | 29 | 1 | 0.003906 | 0.050781 | 0.050781 | 0.113281 |
1 | 2.1 | 3 | 4 | 8 | 0.031250 | 0.093750 | 0.093750 | 0.125000 |
2 | 1.1 | 1.3 | 1.5 | 28 | 0.109375 | 0.142188 | 0.142188 | 0.164063 |
3 | 1 | 0.7 | 0.3 | 56 | 0.218750 | 0.153125 | 0.153125 | 0.065625 |
4 | 0.5 | 0.4 | 0.2 | 70 | 0.273438 | 0.109375 | 0.109375 | 0.054688 |
5 | 1 | 0.7 | 0.3 | 56 | 0.218750 | 0.153125 | 0.153125 | 0.065625 |
6 | 1.1 | 1.3 | 1.5 | 28 | 0.109375 | 0.142188 | 0.142188 | 0.164063 |
7 | 2.1 | 3 | 4 | 8 | 0.031250 | 0.093750 | 0.093750 | 0.125000 |
8 | 5.6 | 13 | 29 | 1 | 0.003906 | 0.050781 | 0.050781 | 0.113281 |
Total | 256 | 1.000000 | 0.989063 | 0.989063 | 0.990625 |
The final table shows the return for all number of rows and risk levels.
BGAMING Summary
Rows | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|
8 | 98.91% | 98.91% | 99.06% |
9 | 99.14% | 99.14% | 99.06% |
10 | 98.91% | 98.91% | 99.06% |
11 | 99.02% | 99.02% | 99.16% |
12 | 98.99% | 98.99% | 99.12% |
13 | 98.99% | 98.99% | 99.09% |
14 | 98.99% | 98.99% | 98.98% |
15 | 99.00% | 99.00% | 99.03% |
16 | 98.99% | 98.99% | 98.98% |
BetFury
BetFury has their own proprietary Plinko game. It has 16 rows and the pays are similar to the 16-row BGaming game. They are exactly the same between the BGaming "high risk" and the BetFury Red pays.
The following table shows what all three betting options pay, probability of winning, and return to the contribution.
BetFury Plinko
Position | Blue Pays | Green Pays | Red Pays | Combinations | Probability | Low Risk Return |
Medium Risk Return |
High Risk Return |
---|---|---|---|---|---|---|---|---|
0 | 16 | 110 | 1000 | 1 | 0.000015 | 0.001678 | 0.001678 | 0.015259 |
1 | 5 | 41 | 130 | 16 | 0.000244 | 0.010010 | 0.010010 | 0.031738 |
2 | 2 | 10 | 26 | 120 | 0.001831 | 0.018311 | 0.018311 | 0.047607 |
3 | 1.3 | 5 | 9 | 560 | 0.008545 | 0.042725 | 0.042725 | 0.076904 |
4 | 1.2 | 2.8 | 4 | 1,820 | 0.027771 | 0.077759 | 0.077759 | 0.111084 |
5 | 0.2 | 1.5 | 2 | 4,368 | 0.066650 | 0.099976 | 0.099976 | 0.133301 |
6 | 1.1 | 1 | 0.2 | 8,008 | 0.122192 | 0.122192 | 0.122192 | 0.024438 |
7 | 1.1 | 0.5 | 0.2 | 11,440 | 0.174561 | 0.087280 | 0.087280 | 0.034912 |
8 | 1 | 0.3 | 0.2 | 12,870 | 0.196381 | 0.058914 | 0.058914 | 0.039276 |
9 | 1.1 | 0.5 | 0.2 | 11,440 | 0.174561 | 0.087280 | 0.087280 | 0.034912 |
10 | 1.1 | 1 | 0.2 | 8,008 | 0.122192 | 0.122192 | 0.122192 | 0.024438 |
11 | 0.2 | 1.5 | 2 | 4,368 | 0.066650 | 0.099976 | 0.099976 | 0.133301 |
12 | 1.2 | 2.8 | 4 | 1,820 | 0.027771 | 0.077759 | 0.077759 | 0.111084 |
13 | 1.3 | 5 | 9 | 560 | 0.008545 | 0.042725 | 0.042725 | 0.076904 |
14 | 2 | 10 | 26 | 120 | 0.001831 | 0.018311 | 0.018311 | 0.047607 |
15 | 5 | 41 | 130 | 16 | 0.000244 | 0.010010 | 0.010010 | 0.031738 |
16 | 16 | 110 | 1000 | 1 | 0.000015 | 0.001678 | 0.001678 | 0.015259 |
Total | 65,536 | 1.000000 | 0.978775 | 0.978775 | 0.989764 |
The bottom row shows the following overall return by bet:
- Blue: 97.88%
- Green: 97.88%
- Red: 98.98%