On this page
Ace on the Deal
Introduction
Ace on the Deal is a video poker game by Bally. I have seen it at both the Suncoast and Red Rock in November 2006. The rules are the same as normal video poker, except the player has the option to pay a sixth coin for the first card on the deal to be guaranteed to be an ace. The sixth coin also pumps up the win on the royal flush, straight flush, and four aces wins only.
There are two plausible ways the game could be programmed. The first is to deal the first card from the four aces and the other four from the remaining 51 cards. The second is to deal random hands, unseen by the player, until one is found containing at least one ace. The rules on the game do not state which method is followed, although I strongly feel the player has the right to know this rule and it should be disclosed. To test which method is used I went over to the Red Rock and to play the game, keeping track of the number of aces observed on each deal. Here are my results.
Red Rock Experiment
Aces | Observations |
---|---|
4 | 0 |
3 | 1 |
2 | 11 |
1 | 91 |
Total | 103 |
The next table shows the number of combinations according to both methods of dealing.
Ace on the Deal Number of Combinations on the Deal
Aces | First Card Ace | Deal until Ace |
---|---|---|
4 | 48 | 48 |
3 | 3384 | 4512 |
2 | 51888 | 103776 |
1 | 194580 | 778320 |
Total | 249900 | 886656 |
The next table shows the probabilities for each number of aces on the deal under both methods.
Ace on the Deal Probabilities on the Deal
Aces | First Card Ace | Deal until Ace |
---|---|---|
4 | 0.000192 | 0.000054 |
3 | 0.013541 | 0.005089 |
2 | 0.207635 | 0.117042 |
1 | 0.778631 | 0.877815 |
Total | 1 | 1 |
The next table compares the actual observations with expectations based on 103 hands played and both methods of dealing.
Ace on the Deal Observations vs. Expectations
Aces | Observations | First Card Ace | Deal until Ace |
---|---|---|---|
4 | 0 | 0.019784 | 0.005576 |
3 | 1 | 1.394766 | 0.524145 |
2 | 11 | 21.386411 | 12.055327 |
1 | 91 | 80.19904 | 90.414952 |
Total | 103 | 103 | 103 |
It is easy to eyeball that the actual observations much more closely match the "Deal until Ace" method of dealing. Doing a chi-squared test against both methods the probability of results as skewed or more against the "First Card Ace" method is 8.47%, and against the "Deal until Ace" method 91.14%.
Now that I have hopefully made a case for how the cards are dealt here is the pay table for the "9/5" Double Double Bonus game at the Suncoast, as seen on November 19, 2006.
"9/5" Double Double Bonus Pay Table
Hand | 1 Coin | 2 Coins | 3 Coins | 4 Coins | 5 Coins | 6 Coins |
---|---|---|---|---|---|---|
Royal Flush | 250 | 500 | 750 | 1000 | 4000 | 4799 |
Straight Flush | 50 | 100 | 150 | 200 | 250 | 250 |
Four A + 2-4 | 400 | 800 | 1200 | 1600 | 2000 | 3200 |
Four 2-4 + A-4 | 160 | 320 | 480 | 640 | 800 | 800 |
Four A | 160 | 320 | 480 | 640 | 800 | 2000 |
Four 2-4 | 80 | 160 | 240 | 320 | 400 | 400 |
Four 5-K | 50 | 100 | 150 | 200 | 250 | 250 |
Full House | 9 | 18 | 27 | 36 | 45 | 45 |
Flush | 5 | 10 | 15 | 20 | 25 | 25 |
Straight | 4 | 8 | 12 | 16 | 20 | 20 |
Three of a kind | 3 | 6 | 9 | 12 | 15 | 15 |
Two pair | 1 | 2 | 3 | 4 | 5 | 5 |
Pair | 1 | 2 | 3 | 4 | 5 | 5 |
Nonpaying hand | 0 | 0 | 0 | 0 | 0 | 0 |
The next table shows the return for the above "9/5" pay table. Unlike most of my video poker return tables the pays column is for a max coin bet. The return column is in units, based on a max coin bet. The lower right cell shows a return of 98.01%.
"9/5" Double Double Bonus Return Table
Hand | 6 Coins Pays | Combinations | Probability | Return |
---|---|---|---|---|
Royal Flush | 4799 | 369773856 | 0.000054 | 0.043491 |
Straight Flush | 250 | 286037892 | 0.000042 | 0.001753 |
Four A + 2-4 | 3200 | 1236649212 | 0.000182 | 0.096987 |
Four 2-4 + A-4 | 800 | 588918024 | 0.000087 | 0.011547 |
Four A | 2000 | 3475480848 | 0.000511 | 0.170357 |
Four 2-4 | 400 | 1521383688 | 0.000224 | 0.014915 |
Four 5-K | 250 | 6361019412 | 0.000935 | 0.038975 |
Full House | 45 | 46570657392 | 0.006848 | 0.051362 |
Flush | 25 | 77043122532 | 0.011329 | 0.047205 |
Straight | 20 | 45953514684 | 0.006757 | 0.022525 |
Three of a kind | 15 | 467039399340 | 0.068678 | 0.171696 |
Two pair | 5 | 658549186308 | 0.09684 | 0.0807 |
Pair | 5 | 1865645999352 | 0.274344 | 0.22862 |
Nonpaying hand | 0 | 3625739947380 | 0.533167 | 0 |
Total | 6800381089920 | 1 | 0.980132 |
At the Red Rock a "7/5" Double Double pay table was used. For the six coins bet wins for a royal flush, straight flush, four aces + 2-4, and four aces + 5-K were progressive. The following table shows the return for the non-progressive wins.
"7/5" Double Double Bonus Progressive Return Table
Hand | 6 Coins Pays | Combinations | Probability | Return |
---|---|---|---|---|
Royal Flush | ? | 347515680 | 0.000051 | ? |
Straight Flush | ? | 397951068 | 0.000059 | ? |
Four A + 2-4 | ? | 1224675948 | 0.00018 | ? |
Four 2-4 + A-4 | 800 | 592059432 | 0.000087 | 0.011608 |
Four A | ? | 3435376812 | 0.000505 | ? |
Four 2-4 | 400 | 1539773928 | 0.000226 | 0.015095 |
Four 5-K | 250 | 6415969800 | 0.000943 | 0.039311 |
Full House | 35 | 45975897216 | 0.006761 | 0.039438 |
Flush | 25 | 79427550792 | 0.01168 | 0.048666 |
Straight | 20 | 52474248996 | 0.007716 | 0.025721 |
Three of a kind | 15 | 466607907240 | 0.068615 | 0.171537 |
Two pair | 5 | 655711428312 | 0.096423 | 0.080352 |
Pair | 5 | 1859530174884 | 0.273445 | 0.227871 |
Nonpaying hand | 0 | 3626700559812 | 0.533308 | 0 |
Total | 6800381089920 | 1 | 0.659600 |
The lower right cell shows the non-progressive wins contribute 65.96% to the return. For a 25-cent game add to this return 0.0000511024*(royal flush win in dollars) + 0.0000585189*(straight flush win in dollars) + 0.0001800893*(four aces + 2-4 in in dollars) + 0.0005051742*(four aces + 5-K win in dollars). At the time I was there on November 19, 2006, at about noon, the progressive wins were $1199.75 for a royal, $62.50 for a straight flush, $819.69 for four aces + 2-4, and $502.82 for four aces + 5-K. At this moment the return was 97.07%, following non-progressive "7/5" strategy.
Also see Deuce on the Deal.